Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 42

Answer

$-\frac{8}{(x+4)(x-4)}$.

Work Step by Step

The given expression is $\Rightarrow \frac{\frac{x-3}{x^2-16}}{1+\frac{1}{x-4}}-\frac{1}{x-4}$ $=\frac{x-3}{x^2-16}$ Factor all terms. $= x^2-16$ $= x^2-4^2$ Use the special formula $A^2-B^2=(A+B)(A-B)$. $= (x+4)(x-4)$ $=\frac{x-3}{(x+4)(x-4)}$ $=1+\frac{1}{x-4}$ $=\frac{1}{1}+\frac{1}{x-4}$ The LCD of the denominators is $(x-4)$. $=\frac{(x-4)}{(x-4)}+\frac{1}{x-4}$ $=\frac{x-4+1}{(x-4)}$ Simplify. $=\frac{x-3}{x-4}$ Back substitute all values into the given fraction. $\Rightarrow \frac{\frac{x-3}{(x+4)(x-4)}}{\frac{x-3}{x-4}}-\frac{1}{x-4}$ Invert the divisor and multiply. $\Rightarrow \frac{x-3}{(x+4)(x-4)}\cdot \frac{x-4}{x-3}-\frac{1}{x-4}$ Cancel common terms. $\Rightarrow \frac{1}{x+4}-\frac{1}{x-4}$ The LCD of the denominators is $(x+4)(x-4)$. $\Rightarrow \frac{x-4}{(x+4)(x-4)}-\frac{x+4}{(x+4)(x-4)}$ $\Rightarrow \frac{x-4-(x+4)}{(x+4)(x-4)}$ Simplify. $\Rightarrow \frac{x-4-x-4}{(x+4)(x-4)}$ $\Rightarrow -\frac{8}{(x+4)(x-4)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.