Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 46

Answer

$ \frac{x^2+1}{(x+1)x^3}$.

Work Step by Step

The given expression is $\Rightarrow \frac{\frac{1}{x+1}}{x-\frac{1}{x+\frac{1}{x}}}$ Solve the lowest denominator. $=x+\frac{1}{x}$ $=\frac{x}{1}+\frac{1}{x}$ The LCD of the denominators is $x$. $=\frac{x(x)}{x}+\frac{1}{x}$ $=\frac{x^2+1}{x}$ Back substitute into the fraction. $=\frac{1}{\frac{x^2+1}{x}}$ Invert the divisor and multiply. $=\frac{x}{x^2+1}$ Back substitute into the fraction. $\Rightarrow \frac{x}{x-\frac{x}{x^2+1}}$ Now solve the denominator. $=x-\frac{x}{x^2+1}$ $=\frac{x}{1}-\frac{x}{x^2+1}$ The LCD of the denominators is $x^2+1$. $=\frac{x(x^2+1)}{x^2+1}-\frac{x}{x^2+1}$ $=\frac{x(x^2+1)-x}{x^2+1}$ Simplify. $=\frac{x^3+x-x}{x^2+1}$ $=\frac{x^3}{x^2+1}$ Back substitute into the fraction. $\Rightarrow \frac{\frac{1}{x+1}}{\frac{x^3}{x^2+1}}$ Invert the divisor and multiply. $\Rightarrow \frac{1}{x+1}\cdot \frac{x^2+1}{x^3}$. $\Rightarrow \frac{x^2+1}{(x+1)x^3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.