Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 40

Answer

$ \frac{2a^2-13a-31}{(a+5)(2a-10)}$.

Work Step by Step

The given expression is $\Rightarrow \frac{\frac{3}{a^2+10a+25}-\frac{1}{a^2-a-2}}{\frac{4}{a^2+6a+5}-\frac{2}{a^2+3a-10}}$ First solve the numerator. $=\frac{3}{a^2+10a+25}-\frac{1}{a^2-a-2}$ Factor all terms. $= a^2+10a+25$ Rewrite the middle term $10a$ as $5a+5a$. $= a^2+5a+5a+25$ Group terms. $= (a^2+5a)+(5a+25)$ Factor each group. $= a(a+5)+5(a+5)$ Factor out $(a+5)$. $= (a+5)(a+5)$ $= a^2-a-2$ Rewrite the middle term $-a$ as $-2a+a$. $= a^2-2a+a-2$ Group terms. $= (a^2-2a)+(a-2)$ Factor each group. $= a(a-2)+1(a-2)$ Factor out $(a-2)$. $= (a-2)(a+1)$ Substitute back all factors. $=\frac{3}{(a+5)(a+5)}-\frac{1}{(a-2)(a+1)}$ The LCD of the denominators is $(a+5)(a+5)(a-2)(a+1)$. $=\frac{3(a-2)(a+1)}{(a+5)(a+5)(a-2)(a+1)}-\frac{1(a+5)(a+5)}{(a+5)(a+5)(a-2)(a+1)}$ $=\frac{3(a-2)(a+1)-1(a+5)(a+5)}{(a+5)(a+5)(a-2)(a+1)}$ Use the FOIL method. $=\frac{3(a^2-2a-2+a)-1(a^2+5a+5a+25)}{(a+5)(a+5)(a-2)(a+1)}$ $=\frac{3a^2-3a-6-a^2-10a-25}{(a+5)(a+5)(a-2)(a+1)}$ $=\frac{2a^2-13a-31}{(a+5)(a+5)(a-2)(a+1)}$ Now solve the denominator of the given fraction. $=\frac{4}{a^2+6a+5}-\frac{2}{a^2+3a-10}$ Factor all terms. $\Rightarrow a^2+6a+5$ Rewrite the middle term $6a$ as $5a+1a$. $\Rightarrow a^2+5a+1a+5$ Group terms. $\Rightarrow (a^2+5a)+(1a+5)$ Factor each group. $\Rightarrow a(a+5)+1(a+5)$ Factor out $(a+5)$. $\Rightarrow (a+5)(a+1)$ Factor all the terms. $\Rightarrow a^2+3a-10$ Rewrite the middle term $3a$ as $5a-2a$. $\Rightarrow a^2+5a-2a-10$ Group terms. $\Rightarrow (a^2+5a)+(-2a-10)$ Factor each group. $\Rightarrow a(a+5)-2(a+5)$ Factor out $(a+5)$. $\Rightarrow (a+5)(a-2)$ Substitute back all factors. $=\frac{4}{(a+5)(a+1)}-\frac{2}{(a+5)(a-2)}$ The LCD of the denominators is $(a+5)(a+1)(a-2)$. $=\frac{4(a-2)}{(a+5)(a+1)(a-2)}-\frac{2(a+1)}{(a+5)(a+1)(a-2)}$ $=\frac{4(a-2)-2(a+1)}{(a+5)(a+1)(a-2)}$ $=\frac{4a-8-2a-2}{(a+5)(a+1)(a-2)}$ Simplify. $=\frac{2a-10}{(a+5)(a+1)(a-2)}$ Back substitute all values into the given fraction. $\Rightarrow \frac{\frac{2a^2-13a-31}{(a+5)(a+5)(a-2)(a+1)}}{\frac{2a-10}{(a+5)(a+1)(a-2)}}$ Invert the divisor and multiply. $\Rightarrow \frac{2a^2-13a-31}{(a+5)(a+5)(a-2)(a+1)}\cdot \frac{(a+5)(a+1)(a-2)}{2a-10}$ Cancel common terms. $\Rightarrow \frac{2a^2-13a-31}{(a+5)(2a-10)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.