Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 26

Answer

$\frac{ ab}{ 5b+2a}$.

Work Step by Step

The given expression is $=\frac{5a^{-1}-2b^{-1}}{25a^{-2}-4b^{-2}}$ Multiply the numerator and the denominator by $a^2b^2$. $=\frac{a^2b^2}{a^2b^2}\cdot \frac{5a^{-1}-2b^{-1}}{25a^{-2}-4b^{-2}}$ Use the distributive property. $=\frac{a^2b^2 \cdot 5a^{-1}-a^2b^2 \cdot 2b^{-1}}{a^2b^2 \cdot 25a^{-2}-a^2b^2 \cdot 4b^{-2}}$ Simplify. $=\frac{ 5a^{-1+2}b^2- 2a^2b^{-1+2}}{ 25a^{-2+2}b^2- 4a^2b^{-2+2}}$ $=\frac{ 5a^{1}b^2- 2a^2b^{1}}{ 25a^{0}b^2- 4a^2b^{0}}$ $=\frac{ 5ab^2- 2a^2b}{ 25b^2- 4a^2}$ Factor the fraction. Numerator $=5ab^2-2a^2b$. Factor out the common terms. $=ab(5b-2a)$ Denominator $=25b^2-4a^2$. $=(5b)^2-(2a)^2$ Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $=(5b+2a)(5b-2a)$. Substitute all factors into the fraction. $=\frac{ ab(5b-2a)}{ (5b+2a)(5b-2a)}$. Cancel common terms. $=\frac{ ab}{ 5b+2a}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.