Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 25

Answer

$\frac{ 3ab(b+a)}{ (2b+3a)(2b-3a)}$.

Work Step by Step

The given expression is $=\frac{3a^{-1}+3b^{-1}}{4a^{-2}-9b^{-2}}$ Multiply the numerator and the denominator by $a^2b^2$. $=\frac{a^2b^2}{a^2b^2}\cdot \frac{3a^{-1+}3b^{-1}}{4a^{-2}-9b^{-2}}$ Use the distributive property. $=\frac{a^2b^2 \cdot 3a^{-1}+a^2b^2 \cdot 3b^{-1}}{a^2b^2 \cdot 4a^{-2}-a^2b^2 \cdot 9b^{-2}}$ Simplify. $=\frac{ 3a^{-1+2}b^2+ 3a^2b^{-1+2}}{ 4a^{-2+2}b^2- 9a^2b^{-2+2}}$ $=\frac{ 3a^{1}b^2+ 3a^2b^{1}}{ 4a^{0}b^2- 9a^2b^{0}}$ $=\frac{ 3ab^2+ 3a^2b}{ 4b^2- 9a^2}$ Factor the fraction. Numerator $=3ab^2+3a^2b$. Factor out the common terms. $=3ab(b+a)$ Denominator $=4b^2-9a^2$. $=(2b)^2-(3a)^2$ Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $=(2b+3a)(2b-3a)$. Substitute all factors into the fraction. $=\frac{ 3ab(b+a)}{ (2b+3a)(2b-3a)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.