Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 435: 22

Answer

$\frac{y(3x+2y)}{y^2+2x}$.

Work Step by Step

The given expression is $=\frac{\frac{3}{xy^2}+\frac{2}{x^2y}}{\frac{1}{x^2y}+\frac{2}{xy^3}}$ Multiply the numerator and the denominator by $x^2y^3$. $=\frac{x^2y^3}{x^2y^3}\cdot \frac{\frac{2}{x^3y}+\frac{5}{xy^4}}{\frac{5}{x^3y}-\frac{3}{xy}}$ Use the distributive property. $=\frac{x^2y^3\cdot \frac{3}{xy^2}+x^2y^3\cdot \frac{2}{x^2y}}{x^2y^3\cdot \frac{1}{x^2y}+x^2y^3\cdot \frac{2}{xy^3}}$ Simplify. $=\frac{3xy+2y^2}{y^2+2x}$ Factor out common terms in the numerator. $=\frac{y(3x+2y)}{y^2+2x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.