Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.3 - Complex Rational Expressions - Exercise Set - Page 436: 24

Answer

$-\frac{6}{5}$.

Work Step by Step

The given expression is $=\frac{\frac{3}{x+1}-\frac{3}{x-1}}{\frac{5}{x^2-1}}$ Factor the term $x^2-1$ Use the algebraic identity $a^2-b^2=(a+b)(a-b)$. $=x^2-1^2$ $=(x+1)(x-1)$ $=\frac{\frac{3}{x+1}-\frac{3}{x-1}}{\frac{5}{(x+1)(x-1)}}$ Multiply the numerator and the denominator by $(x+1)(x-1)$. $=\frac{(x+1)(x-1)}{(x+1)(x-1)}\cdot \frac{\frac{3}{x+1}-\frac{3}{x-1}}{\frac{5}{(x+1)(x-1)}}$ Use the distributive property. $=\frac{(x+1)(x-1) \cdot \frac{3}{x+1}-(x+1)(x-1) \cdot \frac{3}{x-1}}{(x+1)(x-1) \cdot\frac{5}{(x+1)(x-1)}}$ Simplify. $=\frac{3(x-1) -3(x+1)}{5}$ $=\frac{3x-3 -3x-3}{5}$ $=\frac{-6}{5}$ $=-\frac{6}{5}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.