Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.1 - Rational Functions and Multiplying and Dividing Rational Expressions - Exercise Set - Page 346: 70

Answer

$\dfrac{3(x+2)^2}{5}$

Work Step by Step

Factoring the expressions and cancelling the common factors between the numerator and the denominator, the given expression, $ \dfrac{3x^4-10x^2-8}{x-2}\cdot\dfrac{3x+6}{15x^2+10} ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{(3x^2+2)(x^2-4)}{x-2}\cdot\dfrac{3(x+2)}{5(3x^2+2)} \\\\= \dfrac{(3x^2+2)(x+2)(x-2)}{x-2}\cdot\dfrac{3(x+2)}{5(3x^2+2)} \\\\= \dfrac{(\cancel{3x^2+2})(x+2)(\cancel{x-2})}{\cancel{x-2}}\cdot\dfrac{3(x+2)}{5(\cancel{3x^2+2})} \\\\= \dfrac{3(x+2)^2}{5} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.