Answer
$\dfrac{4(x+1)}{5}$
Work Step by Step
Factoring the expressions and then cancelling common factors between the numerator and the denominator, then the given expression, $
\dfrac{2x^2-2}{10x+30}\cdot\dfrac{12x+36}{3x-3}
$, simplifies to
\begin{array}{l}\require{cancel}
\dfrac{2(x^2-1)}{10(x+3)}\cdot\dfrac{12(x+3)}{3(x-1)}
\\\\=
\dfrac{\cancel{2}(\cancel{x-1})(x+1)}{\cancel{2}\cdot5(\cancel{x+3})}\cdot\dfrac{\cancel{3}\cdot4(\cancel{x+3})}{\cancel{3}(\cancel{x-1})}
\\\\=
\dfrac{4(x+1)}{5}
.\end{array}