Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.1 - Rational Functions and Multiplying and Dividing Rational Expressions - Exercise Set - Page 346: 50

Answer

$\dfrac{(x+2)(x+2)}{6(x-2)}$

Work Step by Step

Factoring the expressions and then cancelling the common factor/s between the numerator and the denominator, then the given expression, $ \dfrac{x^2-4}{3x+6}\div\dfrac{2x^2-8x+8}{x^2+4x+4} $, simplifies to \begin{array}{l}\require{cancel} \dfrac{x^2-4}{3x+6}\cdot\dfrac{x^2+4x+4}{2x^2-8x+8} \\\\= \dfrac{(x+2)(x-2)}{3(x+2)}\cdot\dfrac{(x+2)(x+2)}{2(x^2-4x+4)} \\\\= \dfrac{(x+2)(x-2)}{3(x+2)}\cdot\dfrac{(x+2)(x+2)}{2(x-2)(x-2)} \\\\= \dfrac{(\cancel{x+2})(\cancel{x-2})}{3(\cancel{x+2})}\cdot\dfrac{(x+2)(x+2)}{2(\cancel{x-2})(x-2)} \\\\= \dfrac{(x+2)(x+2)}{6(x-2)} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.