Answer
$\dfrac{4}{x}\div\dfrac{3xy}{x^{2}}\cdot\dfrac{6x^{2}}{x^{4}}=\dfrac{2x^{2}}{9y}$
Work Step by Step
$\dfrac{4}{x}\div\dfrac{3xy}{x^{2}}\cdot\dfrac{6x^{2}}{x^{4}}$
Evaluate the product $\dfrac{3xy}{x^{2}}\cdot\dfrac{6x^{2}}{x^{4}}$:
$\dfrac{4}{x}\div\dfrac{3xy}{x^{2}}\cdot\dfrac{6x^{2}}{x^{4}}=\dfrac{4}{x}\div\dfrac{18x^{3}y}{x^{6}}=...$
Evaluate the division and simplify:
$...=\dfrac{4x^{6}}{18x^{4}y}=\dfrac{2x^{2}}{9y}$