Answer
$2y$
Work Step by Step
Cancel common factors to have:
$\require{cancel}
\\=\dfrac{4}{\cancel{x}} \cdot \dfrac{3\cancel{x}y}{x^2} \div \dfrac{6\cancel{x^2}}{\cancel{x^4}x^2}
\\\\=\dfrac{12y}{x^2} \div \dfrac{6}{x^2}$
RECALL:
$\dfrac{a}{b} \div \dfrac{c}{d} = \dfrac{a}{b} \cdot \dfrac{d}{c}$
Use the rule above to have:
$\\\require{cancel}=\dfrac{12y}{x^2} \cdot \dfrac{x^2}{6}$
Cancel the common factors to have:
$\\\require{cancel}=\dfrac{\cancel{(12)}2y}{\cancel{x^2}} \cdot \dfrac{\cancel{x^2}}{\cancel{6}}
\\\\\\=2y$