Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.1 - Rational Functions and Multiplying and Dividing Rational Expressions - Exercise Set - Page 346: 68

Answer

$\dfrac{20(a-2)(a-2)}{9a^3(3a+2)}$

Work Step by Step

Factoring the expressions and cancelling the common factors between the numerator and the denominator, the given expression, $ \dfrac{5a^2-20}{3a^2-12a}\div\left( \dfrac{a^3+2a^2}{2a^2-8a}\cdot\dfrac{9a^3+6a^2}{2a^2-4a} \right) ,$ simplifies to \begin{array}{l}\require{cancel} \dfrac{5a^2-20}{3a^2-12a}\cdot\dfrac{2a^2-8a}{a^3+2a^2}\cdot\dfrac{2a^2-4a}{9a^3+6a^2} \\\\ \dfrac{5(a^2-4)}{3a(a-4)}\cdot\dfrac{2a(a-4)}{a^2(a+2)}\cdot\dfrac{2a(a-2)}{3a^2(3a+2)} \\\\ \dfrac{5(a+2)(a-2)}{3a(a-4)}\cdot\dfrac{2a(a-4)}{a^2(a+2)}\cdot\dfrac{2a(a-2)}{3a^2(3a+2)} \\\\ \dfrac{5(\cancel{a+2})(a-2)}{3\cancel{a}(\cancel{a-4})}\cdot\dfrac{2\cancel{a}(\cancel{a-4})}{\cancel{a}\cdot a(\cancel{a+2})}\cdot\dfrac{2\cancel{a}(a-2)}{3a^2(3a+2)} \\\\= \dfrac{20(a-2)(a-2)}{9a^3(3a+2)} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.