Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.1 - Rational Functions and Multiplying and Dividing Rational Expressions - Exercise Set - Page 346: 55

Answer

$\dfrac{8(a-2)}{3(a+2)}$

Work Step by Step

Factoring the expressions and then cancelling the common factor/s between the numerator and the denominator, then the given expression, $ \dfrac{8b+24}{3a+6}\div\dfrac{ab-2b+3a-6}{a^2-4a+4} $, simplifies to \begin{array}{l}\require{cancel} \dfrac{8b+24}{3a+6}\cdot\dfrac{a^2-4a+4}{ab-2b+3a-6} \\\\= \dfrac{8(b+3)}{3(a+2)}\cdot\dfrac{(a-2)(a-2)}{(ab-2b)+(3a-6)} \\\\= \dfrac{8(b+3)}{3(a+2)}\cdot\dfrac{(a-2)(a-2)}{b(a-2)+3(a-2)} \\\\= \dfrac{8(b+3)}{3(a+2)}\cdot\dfrac{(a-2)(a-2)}{(a-2)(b+3)} \\\\= \dfrac{8(\cancel{b+3})}{3(a+2)}\cdot\dfrac{(\cancel{a-2})(a-2)}{(\cancel{a-2})(\cancel{b+3})} \\\\= \dfrac{8(a-2)}{3(a+2)} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.