Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.1 - Rational Functions and Multiplying and Dividing Rational Expressions - Exercise Set - Page 346: 41

Answer

$\dfrac{3a}{5(a-b)}$

Work Step by Step

Factoring the expressions and then cancelling common factors between the numerator and the denominator, then the given expression, $ \dfrac{a^3+a^2b+a+b}{5a^3+5a}\cdot\dfrac{6a^2}{2a^2-2b^2} $, simplifies to \begin{array}{l}\require{cancel} \dfrac{(a^3+a^2b)+(a+b)}{5a(a^2+1)}\cdot\dfrac{6a^2}{2(a^2-b^2)} \\\\= \dfrac{a^2(a+b)+(a+b)}{5a(a^2+1)}\cdot\dfrac{2\cdot3\cdot a\cdot a}{2(a-b)(a+b)} \\\\= \dfrac{(\cancel{a+b})(\cancel{a^2+1})}{5\cancel{a}(\cancel{a^2+1})}\cdot\dfrac{\cancel{2}\cdot3\cdot \cancel{a}\cdot a}{\cancel{2}(a-b)(\cancel{a+b})} \\\\= \dfrac{3a}{5(a-b)} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.