Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 6 - Section 6.1 - Rational Functions and Multiplying and Dividing Rational Expressions - Exercise Set - Page 346: 56

Answer

$\dfrac{a-b}{3a}$

Work Step by Step

Factoring the expressions and then cancelling the common factor/s between the numerator and the denominator, then the given expression, $ \dfrac{2a^2-2b^2}{a^3+a^2b+a+b}\div\dfrac{6a^2}{a^3+a} $, simplifies to \begin{array}{l}\require{cancel} \dfrac{2a^2-2b^2}{a^3+a^2b+a+b}\cdot\dfrac{a^3+a}{6a^2} \\\\= \dfrac{2(a+b)(a-b)}{(a^3+a^2b)+(a+b)}\cdot\dfrac{a(a^2+1)}{6a^2} \\\\= \dfrac{2(a+b)(a-b)}{a^2(a+b)+(a+b)}\cdot\dfrac{a(a^2+1)}{2\cdot3\cdot a\cdot a} \\\\= \dfrac{2(a+b)(a-b)}{(a+b)(a^2+1)}\cdot\dfrac{a(a^2+1)}{2\cdot3\cdot a\cdot a} \\\\= \dfrac{\cancel{2}(\cancel{a+b})(a-b)}{(\cancel{a+b})(\cancel{a^2+1})}\cdot\dfrac{\cancel{a}(\cancel{a^2+1})}{\cancel{2}\cdot3\cdot \cancel{a}\cdot a} \\\\= \dfrac{a-b}{3a} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.