Answer
$100(z+1)(z^2-z+1)$
Work Step by Step
Factoring the $GCF=
100
$ results to $
100(z^3+1)
$. Using $a^3+b^3=(a+b)(a^2-ab+b^2)$ or the factoring of two cubes, then,
\begin{array}{l}
100(z^3+1)
\\=
100[(z)+(1)][(z)^2-(z)(1)+(1)^2]
\\=
100(z+1)(z^2-z+1)
.\end{array}