Answer
$20(x+y)(x^2-xy+y^2)$
Work Step by Step
Factoring the $GCF=
20
$ results to $
20(x^3+y^3)
$. Using $a^3+b^3=(a+b)(a^2-ab+b^2)$ or the factoring of 2 cubes, then,
\begin{array}{l}
20(x^3+y^3)
\\=
20[(x)+(y)][(x)^2-(x)(y)+(y)^2]
\\=
20(x+y)(x^2-xy+y^2)
.\end{array}