Answer
$2(x-3)(x^2+3x+9)$
Work Step by Step
Factoring the $GCF=
2
$ results to $
2(x^3-27)
$. Using $a^3+b^3=(a+b)(a^2-ab+b^2)$ or the factoring of two cubes, then,
\begin{array}{l}
2(x^3-27)
\\=
2[(x)+(-3)][(x)^2-(x)(-3)+(-3)^2]
\\=
2(x-3)(x^2+3x+9)
.\end{array}