Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 747: 91

Answer

$pH = 7.48$

Work Step by Step

1. Calculate the molar mass: 12.01* 8 + 1.01* 10 + 14.01* 4 + 16* 2 = 194.22g/mol 2. Calculate the number of moles $n(moles) = \frac{mass(g)}{mm(g/mol)}$ $n(moles) = \frac{0.455}{ 194.22}$ $n(moles) = 2.34\times 10^{- 3}$ 3. Find the concentration in mol/L: $2.34 \times 10^{-3}$ mol in 1L: $2.34 \times 10^{-3} M$ - Calculate the $K_b$ using the $pK_b$ $K_b = 10^{-pKb}$ $K_b = 10^{- 10.4}$ $K_b = 3.98 \times 10^{- 11}$ - We have these concentrations at equilibrium: -$[OH^-] = [C_8H_{11}N_4{O_2}^+] = x$ -$[C_8H_{10}N_4O_2] = [C_8H_{10}N_4O_2]_{initial} - x = 2.34 \times 10^{- 3} - x$ For approximation, we consider: $[C_8H_{10}N_4O_2] = 2.34 \times 10^{- 3}M$ - Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][C_8H_{11}N_4{O_2}^+]}{ [C_8H_{10}N_4O_2]}$ $Kb = 3.98 \times 10^{- 11}= \frac{x * x}{ 2.34\times 10^{- 3}}$ $Kb = 3.98 \times 10^{- 11}= \frac{x^2}{ 2.34\times 10^{- 3}}$ $ 9.33 \times 10^{- 14} = x^2$ $x = 3.05 \times 10^{- 7}$ Percent ionization: $\frac{ 3.05 \times 10^{- 7}}{ 2.34\times 10^{- 3}} \times 100\% = 0.013\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [C_8H_{11}N_4{O_2}^+] = x = 3.05 \times 10^{- 7}M $ $[C_8H_{10}N_4O_2] \approx 2.34 \times 10^{-3}M$ $pOH = -log[OH^-]$ $pOH = -log( 3.05 \times 10^{- 7})$ $pOH = 6.52$ $pH + pOH = 14$ $pH + 6.52 = 14$ $pH = 7.48$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.