Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 747: 74d

Answer

$$Percent \space ionization = 5.8\%$$

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium: $HCHO_2(aq) + H_2O(l) \lt -- \gt CH{O_2}^-(aq) + H_3O^+(aq) $ \begin{matrix} & [HCHO_2] & [H_3O^+] & CH{O_2}^- \\ Initial & 0.0500 & 0 & 0 \\ Change & -x & +x & +x\\ Equil & 0.0500 -x & x & x \end{matrix} For approximation, we are going to consider $0.0500 - x \approx 0.0500$ 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][CH{O_2}^-]}{ [HCHO_2]}$ $Ka = 1.8 \times 10^{- 4}= \frac{x * x}{ 0.0500}$ $Ka = 1.8 \times 10^{- 4}= \frac{x^2}{ 0.0500}$ $x^2 = 0.0500 \times 1.8 \times 10^{-4} $ $x = \sqrt { 0.0500 \times 1.8 \times 10^{-4}} = 3.0 \times 10^{-3} $ Percent ionization: $\frac{ 3.0 \times 10^{- 3}}{ 0.0500} \times 100\% = 6.0 \%$ %ionization > 5% : Inappropriate approximation, so, we will have to consider the '-x' in the acid concentration: $Ka = 1.8 \times 10^{-4} = \frac{x^2}{0.0500-x}$ $(1.8 \times 10^{-4} \times 0.0500) - 1.8 \times 10^{-4}x = x^2$ $(1.8 \times 10^{-4} \times 0.0500) - 1.8 \times 10^{-4}x - x^2 = 0$ Bhaskara: $x_1 = \frac{ - (- 1.8 \times 10^{-4})+ \sqrt {(1.8 \times 10^{-4})^2 - 4(-1)(1.8 \times 10^{-4} \times 0.0500)}}{2*(-1)}$ or $x_2 = \frac{ - (- 1.8 \times 10^{-4})- \sqrt {(1.8 \times 10^{-4})^2 - 4(-1)(1.8 \times 10^{-4} \times 0.0500)}}{2*(-1)}$ $x_1 = - 3.1 \times 10^{- 3} (Negative)$ $x_2 = 2.9 \times 10^{- 3}$ - The concentration can't be negative, so $[H_3O^+]$ = $x_2$ Percent ionization: $\frac{ 2.9 \times 10^{- 3}}{ 0.0500} \times 100\% = 5.8 \%$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.