Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 747: 64

Answer

$[H_3O^+] = 6 \times 10^{- 3}M $ $pH = 2.222$

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [Conj. Base] = x$ -$[Formic Acid] = [Formic Acid]_{initial} - x = 0.2 - x$ For approximation, we consider: $[Formic Acid] = 0.2M$ 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][Conj. Base]}{ [Formic Acid]}$ $Ka = 1.8 \times 10^{- 4}= \frac{x * x}{ 0.2}$ $Ka = 1.8 \times 10^{- 4}= \frac{x^2}{ 0.2}$ $ 3.6 \times 10^{- 5} = x^2$ $x = 6 \times 10^{- 3}$ Percent ionization: $\frac{ 6 \times 10^{- 3}}{ 0.2} \times 100\% = 3\%$ %ionization < 5% : Right approximation. Therefore: $[H_3O^+] = [Conj. Base] = x = 6 \times 10^{- 3}M $ And, since 'x' has a very small value (compared to the initial concentration): $[Formic Acid] \approx 0.2M$ 3. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 6 \times 10^{- 3})$ $pH = 2.222$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.