Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 747: 67

Answer

$pH = 2.75$

Work Step by Step

1. Calculate the molar mass: 1.01* 1 + 12.01* 2 + 1.01* 3 + 16* 2 = 60.06g/mol ** We have to convert the concentration from g/ml to mol/L, so: 2. Calculate the number of moles $n(moles) = \frac{mass(g)}{mm(g/mol)}$ $n(moles) = \frac{1.05}{ 60.06}$ $n(moles) = 0.0175$ 3. Find the concentration in mol/L: $C(mol/L) = \frac{n(moles)}{volume(L)}$ ** 1ml = 0.001L $ C(mol/L) = \frac{ 0.0175}{ 0.001} $ $C(mol/L) = 17.5$ 4. Find the concentration after the dilution: $C_1 * V_1 = C_2 * V_2$ $17.5*0.015= C_2 *1.5$ $0.262 = C_2 *1.5$ $C_2 =0.175$ 5. We have those concentrations at equilibrium: -$[H_3O^+] = [C_2H_3{O_2}^-] = x$ -$[HC_2H_3O_2] = [HC_2H_3O_2]_{initial} - x = 0.175 - x$ For approximation, we consider: $[HC_2H_3O_2] = 0.175M$ 6. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][C_2H_3{O_2}^-]}{ [HC_2H_3O_2]}$ $Ka = 1.8 \times 10^{- 5}= \frac{x * x}{ 0.175}$ $Ka = 1.8 \times 10^{- 5}= \frac{x^2}{ 0.175}$ $ 3.15 \times 10^{- 6} = x^2$ $x = 1.77 \times 10^{- 3}$ Percent dissociation: $\frac{ 1.77 \times 10^{- 3}}{ 0.175} \times 100\% = 1.01\%$ %dissociation < 5% : Right approximation. Therefore: $[H_3O^+] = [C_2H_3{O_2}^-] = x = 1.77 \times 10^{- 3}M $ And, since 'x' has a very small value (compared to the initial concentration): $[HC_2H_3O_2] \approx 0.175M$ 7. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 1.77 \times 10^{- 3})$ $pH = 2.75$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.