Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 747: 76

Answer

$$K_a = 3.0 \times 10^{- 6}$$

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium: $HX(aq) + H_2O(l) \lt -- \gt X^-(aq) + H_3O^+(aq) $ \begin{matrix} & [HX] & [H_3O^+] & X^- \\ Initial & 0.085 & 0 & 0 \\ Change & -x & +x & +x\\ Equil & 0.085 -x & x & x \end{matrix} 2. Write the percent dissociation equation, and find 'x': %dissociation = $\frac{x}{[Initial Acid]} \times 100$ 0.59= $\frac{x}{ 0.085} \times 100$ 0.0059= $\frac{x}{ 0.085}$ $ 5.0 \times 10^{- 4}= x$ Therefore: $[X^-] and [H_3O^+] = 5.0 \times 10^{- 4}$ 3. Write the Ka equation, and find its value: $Ka = \frac{[H_3O^+][X^-]}{ [HX]}$ $Ka = \frac{x^2}{0.085 - x}$ $Ka = \frac{( 5.0\times 10^{- 4})^2}{ 0.085- 5\times 10^{- 4}}$ $Ka = 3.0 \times 10^{- 6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.