Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Cumulative Problems - Page 750: 140e

Answer

$pH = 10.30$

Work Step by Step

- Identify the electrolytes: $Na^+$: Insignificant $ClO^-$: Weak base $K^+$: Insignificant $I^-$: Insignificant - Therefore, we just need to consider the $ClO^-$ to calculate the pH. 1. Since $ClO^-$ is the conjugate base of $HClO$ , we can calculate its kb by using this equation: $K_a * K_b = K_w = 10^{-14}$ $ 2.9\times 10^{- 8} * K_b = 10^{-14}$ $K_b = \frac{10^{-14}}{ 2.9\times 10^{- 8}}$ $K_b = 3.448\times 10^{- 7}$ 2. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[OH^-] = [HClO] = x$ -$[ClO^-] = [ClO^-]_{initial} - x = 0.115 - x$ For approximation, we consider: $[ClO^-] = 0.115M$ 3. Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][HClO]}{ [ClO^-]}$ $Kb = 3.448 \times 10^{- 7}= \frac{x * x}{ 0.115}$ $Kb = 3.448 \times 10^{- 7}= \frac{x^2}{ 0.115}$ $ 3.966 \times 10^{- 8} = x^2$ $x = 1.991 \times 10^{- 4}$ Percent ionization: $\frac{ 1.991 \times 10^{- 4}}{ 0.115} \times 100\% = 0.1732\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [HClO] = x = 1.991 \times 10^{- 4}M $ $[ClO^-] \approx 0.115M$ 4. Calculate the pH. $pOH = -log[OH^-]$ $pOH = -log( 1.991 \times 10^{- 4})$ $pOH = 3.701$ $pH + pOH = 14$ $pH + 3.701 = 14$ $pH = 10.299$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.