Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Cumulative Problems - Page 750: 139d

Answer

$pH = 8.57$

Work Step by Step

- Identify the significant electrolytes: $Na^+$ : Insignificant $C_7H_5{O_2}^-$: Weak base. $K^+$: Insignificant $Br^-$: Insignificant - Therefore, the only reaction that will occur is the base ionization: 1. Since $C_7H_5{O_2}^-$ is the conjugate base of $HC_7H_5O_2$ , we can calculate its kb by using this equation: $K_a * K_b = K_w = 10^{-14}$ $ 6.5\times 10^{- 5} * K_b = 10^{-14}$ $K_b = \frac{10^{-14}}{ 6.5\times 10^{- 5}}$ $K_b = 1.538\times 10^{- 10}$ 2. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[OH^-] = [HC_7H_5O_2] = x$ -$[C_7H_5{O_2}^-] = [C_7H_5{O_2}^-]_{initial} - x = 0.0887 - x$ For approximation, we consider: $[C_7H_5{O_2}^-] = 0.0887M$ 3. Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][HC_7H_5O_2]}{ [C_7H_5{O_2}^-]}$ $Kb = 1.538 \times 10^{- 10}= \frac{x * x}{ 0.0887}$ $Kb = 1.538 \times 10^{- 10}= \frac{x^2}{ 0.0887}$ $ 1.365 \times 10^{- 11} = x^2$ $x = 3.694 \times 10^{- 6}$ Percent ionization: $\frac{ 3.694 \times 10^{- 6}}{ 0.0887} \times 100\% = 0.004165\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [HC_7H_5O_2] = x = 3.694 \times 10^{- 6}M $ $[C_7H_5{O_2}^-] \approx 0.0887M$ 4. Calculate the pH: $pOH = -log[OH^-]$ $pOH = -log( 3.694 \times 10^{- 6})$ $pOH = 5.432$ $pH + pOH = 14$ $pH + 5.432 = 14$ $pH = 8.568$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.