Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Cumulative Problems - Page 750: 137b

Answer

pH = 1.52

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [Cl{O_2}^-] = x$ -$[HClO_2] = [HClO_2]_{initial} - x = 0.115 - x$ For approximation, we consider: $[HClO_2] = 0.115M$ 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][Cl{O_2}^-]}{ [HClO_2]}$ $Ka = 1.1 \times 10^{- 2}= \frac{x * x}{ 0.115}$ $Ka = 1.1 \times 10^{- 2}= \frac{x^2}{ 0.115}$ $ 1.265 \times 10^{- 3} = x^2$ $x = 3.557 \times 10^{- 2}$ Percent dissociation: $\frac{ 3.557 \times 10^{- 2}}{ 0.115} \times 100\% = 30.93\%$ %dissociation > 5% : Inappropriate approximation, so, we will have to consider the '-x' in the acid concentration: $Ka = 0.011= \frac{x^2}{ 0.115- x}$ $ 1.265 \times 10^{- 3} - 0.011x = x^2$ $ 1.265 \times 10^{- 3} - 1.1 \times 10^{- 2}x - x^2 = 0$ Bhaskara: $\Delta = (- 1.1 \times 10^{- 2})^2 - 4 * (-1) *( 1.265 \times 10^{- 3})$ $\Delta = 1.21 \times 10^{- 4} + 5.06 \times 10^{- 3} = 5.181 \times 10^{- 3}$ $x_1 = \frac{ - (- 1.1 \times 10^{- 2})+ \sqrt { 5.181 \times 10^{- 3}}}{2*(-1)}$ or $x_2 = \frac{ - (- 1.1 \times 10^{- 2})- \sqrt { 5.181 \times 10^{- 3}}}{2*(-1)}$ $x_1 = - 4.1 \times 10^{- 2} (Negative)$ $x_2 = 3.0 \times 10^{- 2}$ - The concentration can't be negative, so $[H_3O^+]$ = $x_2$ 3. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 0.030)$ $pH = 1.52$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.