Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Cumulative Problems - Page 750: 139b

Answer

$pH = 8.22$

Work Step by Step

- Identify the significant electrolytes: - $Na^+$: Insignificant - $Cl^-$: Insignificant - $K^+$: Insignificant - $F^-:$ Weak base. Therefore, the only reaction that will occur is the ionization of this base: 1. Since $F^-$ is the conjugate base of $HF$ , we can calculate its kb by using this equation: $K_a * K_b = K_w = 10^{-14}$ $ 3.5\times 10^{- 4} * K_b = 10^{-14}$ $K_b = \frac{10^{-14}}{ 3.5\times 10^{- 4}}$ $K_b = 2.857\times 10^{- 11}$ 2. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[OH^-] = [HF] = x$ -$[F^-] = [F^-]_{initial} - x = 0.0953 - x$ For approximation, we consider: $[F^-] = 0.0953M$ 3. Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][HF]}{ [F^-]}$ $Kb = 2.857 \times 10^{- 11}= \frac{x * x}{ 0.0953}$ $Kb = 2.857 \times 10^{- 11}= \frac{x^2}{ 0.0953}$ $ 2.723 \times 10^{- 12} = x^2$ $x = 1.65 \times 10^{- 6}$ Percent ionization: $\frac{ 1.65 \times 10^{- 6}}{ 0.0953} \times 100\% = 0.001731\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [HF] = x = 1.65 \times 10^{- 6}M $ $[F^-] \approx 0.0953M$ 4. Calculate the pH: $pOH = -log[OH^-]$ $pOH = -log( 1.65 \times 10^{- 6})$ $pOH = 5.782$ $pH + pOH = 14$ $pH + 5.782 = 14$ $pH = 8.218$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.