Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Cumulative Problems - Page 750: 137e

Answer

$pH = 5.03$

Work Step by Step

1. $NH_4Cl$ is a salt formed by $N{H_4}^+$ and $Cl^-$ $Cl^-$ is a very weak base, so, we don't need to consider it. $N{H_4}^+$ is a weak acid. 2. Now, use the $K_b$ of $NH_3$ to calculate the $K_a$ of $N{H_4}^+$: $K_b ( NH_3) = 1.76 \times 10^{-5}$ $K_b * K_a = K_w = 10^{-14}$ $ 1.76\times 10^{- 5} * K_a = 10^{-14}$ $K_a = \frac{10^{-14}}{ 1.76\times 10^{- 5}}$ $K_a = 5.682\times 10^{- 10}$ 3. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [NH_3] = x$ -$[N{H_4}^+] = [N{H_4}^+]_{initial} - x = 0.155 - x$ For approximation, we consider: $[N{H_4}^+] = 0.155M$ 4. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][NH_3]}{ [N{H_4}^+]}$ $Ka = 5.682 \times 10^{- 10}= \frac{x * x}{ 0.155}$ $Ka = 5.682 \times 10^{- 10}= \frac{x^2}{ 0.155}$ $ 8.807 \times 10^{- 11} = x^2$ $x = 9.384 \times 10^{- 6}$ Percent dissociation: $\frac{ 9.384 \times 10^{- 6}}{ 0.155} \times 100\% = 0.006054\%$ %dissociation < 5% : Right approximation. Therefore: $[H_3O^+] = [NH_3] = x = 9.384 \times 10^{- 6}M $ And, since 'x' has a very small value (compared to the initial concentration): $[N{H_4}^+] \approx 0.155M$ 5. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 9.384 \times 10^{- 6})$ $pH = 5.03$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.