Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Cumulative Problems - Page 750: 138b

Answer

$pH = 2.093$

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [N{O_2}^-] = x$ -$[HNO_2] = [HNO_2]_{initial} - x = 0.15 - x$ For approximation, we consider: $[HNO_2] = 0.150M$ 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][N{O_2}^-]}{ [HNO_2]}$ $Ka = 4.6 \times 10^{- 4}= \frac{x * x}{ 0.15}$ $Ka = 4.6 \times 10^{- 4}= \frac{x^2}{ 0.15}$ $ 6.9 \times 10^{- 5} = x^2$ $x = 8.307 \times 10^{- 3}$ Percent dissociation: $\frac{ 8.307 \times 10^{- 3}}{ 0.15} \times 100\% = 5.538\%$ %dissociation > 5% : Inappropriate approximation, so, we will have to consider the '-x' in the acid concentration: $Ka = 4.6 \times 10^{- 4}= \frac{x^2}{ 0.15- x}$ $ 6.9 \times 10^{- 5} - 4.6 \times 10^{- 4}x = x^2$ $ 6.9 \times 10^{- 5} - 4.6 \times 10^{- 4}x - x^2 = 0$ Bhaskara: $\Delta = (- 4.6 \times 10^{- 4})^2 - 4 * (-1) *( 6.9 \times 10^{- 5})$ $\Delta = 2.116 \times 10^{- 7} + 2.76 \times 10^{- 4} = 2.762 \times 10^{- 4}$ $x_1 = \frac{ - (- 4.6 \times 10^{- 4})+ \sqrt { 2.762 \times 10^{- 4}}}{2*(-1)}$ or $x_2 = \frac{ - (- 4.6 \times 10^{- 4})- \sqrt { 2.762 \times 10^{- 4}}}{2*(-1)}$ $x_1 = - 8.54 \times 10^{- 3} (Negative)$ $x_2 = 8.08 \times 10^{- 3}$ - The concentration can't be negative, so $[H_3O^+]$ = $x_2$ 3. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 8.08 \times 10^{- 3})$ $pH = 2.093$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.