Answer
$5$
Work Step by Step
Need to solve $ \tan 360^{\circ} +4 \sin 180^{\circ}+5 \cos^2 180^{\circ}$
In order to solve the given expression we can use Trigonometric table of angles.
Now, $\tan 360^{\circ} =\tan (270^{\circ}+90^{\circ}] =-\cot 90^{\circ} =0$
Therefore, we have:
$ \tan 360^{\circ} +4 \sin 180^{\circ}+5 \cos^2 180^{\circ} = 0 +4(0)+(5)(-1)^2 =5$