Answer
The product of $ AB={{I}_{3}}$, product of $ BA={{I}_{3}}$ and $ B $ is the multiplicative inverse of $ A $ i.e. $ B={{A}^{-1}}$.
Work Step by Step
The given expression is
$ A=\left[ \begin{matrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{matrix} \right],B=\left[ \begin{matrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{matrix} \right]$
Now, we will compute the matrix as $\left[ AB \right]$
$\begin{align}
& AB=\left[ \begin{matrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{matrix} \right]\left[ \begin{matrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0\times 0+1\times 1+0\times 0 & 0\times 0+1\times 0+0\times 1 & 0\times 1+1\times 0+0\times 1 \\
0\times 0+0\times 1+1\times 0 & 0\times 0+0\times 0+1\times 1 & 0\times 1+0\times 0+1\times 0 \\
1\times 0+0\times 1+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 1+0\times 0+0\times 0 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{3}}
\end{align}$
Now, we will compute the matrix as $\left[ BA \right]$
$\begin{align}
& BA=\left[ \begin{matrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{matrix} \right]\left[ \begin{matrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0\times 0+0\times 0+1\times 1 & 0\times 1+0\times 0+1\times 0 & 0\times 0+0\times 1+1\times 0 \\
1\times 0+0\times 0+0\times 1 & 1\times 1+0\times 0+0\times 0 & 1\times 0+0\times 1+0\times 0 \\
0\times 0+1\times 0+0\times 1 & 0\times 1+1\times 0+0\times 0 & 0\times 0+1\times 1+0\times 0 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{3}}
\end{align}$
Both matrix $ AB $ and matrix $ BA $ are equal to the identity matrix
Now, we will compute the matrix $ B={{A}^{-1}}$.
$ B=\left[ \begin{matrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{matrix} \right]$
And
$ A=\left[ \begin{matrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{matrix} \right]$
Determine the inverse of matrix A.
Now, reduce matrix to row form:
$ A={{\left[ \begin{matrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{matrix} \right]}^{-1}}$
Augment with an identity matrix
$\left[ \begin{matrix}
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
\end{matrix} \right]$
Swap matrix rows: ${{R}_{1}}\leftrightarrow {{R}_{3}}$
$ A=\left[ \begin{matrix}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
\end{matrix} \right]$
And
$\begin{align}
& {{R}_{2}}\leftrightarrow {{R}_{3}} \\
& \left[ \begin{matrix}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
\end{matrix} \right] \\
\end{align}$
Therefore, matrix $ B $ is the multiplicative inverse of matrix $ A $.