Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Exercise Set - Page 932: 18

Answer

The matrix does not have an inverse.

Work Step by Step

Consider the given matrix $ A=\left[ \begin{matrix} 6 & -3 \\ -2 & 1 \\ \end{matrix} \right]$ Now, by using the inverse formula we get: ${{A}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right]$ Let, $\begin{align} & a=6 \\ & b=-3 \\ & c=-2 \\ & d=1 \end{align}$ Substitute the values to get $\begin{align} & {{A}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right] \\ & {{A}^{-1}}=\frac{1}{\left| 6\times 1-\left( -3 \right)\times \left( -2 \right) \right|}\left[ \begin{matrix} 1 & 3 \\ 2 & 6 \\ \end{matrix} \right] \\ & =\frac{1}{0}\left[ \begin{matrix} 2 & -3 \\ 1 & 2 \\ \end{matrix} \right] \end{align}$ So, therefore the matrix does not have an inverse $ ab-bc=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.