Answer
The inverse matrix of the provided matrix is ${{A}^{-1}}=\left[ \begin{matrix}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{6} & 0 \\
0 & 0 & \frac{1}{9} \\
\end{matrix} \right]$.
Work Step by Step
Consider the provided matrix $ A=\left[ \begin{matrix}
3 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 9 \\
\end{matrix} \right]$.
Compute matrix in the form of:
$\left[ \left. A \right|I \right]$
Augment matrix with identity matrix is:
$\left[ \left. A \right|I \right]=\left[ \begin{matrix}
3 & 0 & 0 & 1 & 0 & 0 \\
0 & 6 & 0 & 0 & 1 & 0 \\
0 & 0 & 9 & 0 & 0 & 1 \\
\end{matrix} \right]$
Now, we will use row operations to reduce in row echelon form for the inverse:
$\begin{align}
& {{R}_{3}}\to \frac{1}{9}\times {{R}_{3}}, \\
& {{R}_{2}}\to \frac{1}{6}\times {{R}_{_{2}}}, \\
& {{R}_{1}}\to \frac{1}{3}\times {{R}_{1}} \\
\end{align}$
The resulting matrix is:
$\begin{align}
& \left[ \left. A \right|I \right]=\left[ \begin{matrix}
1 & 0 & 0 & \frac{1}{3} & 0 & 0 \\
0 & 1 & 0 & 0 & \frac{1}{6} & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{9} \\
\end{matrix} \right] \\
& =\left[ \left. I \right|B \right]
\end{align}$
Therefore, the inverse of the matrix is:
${{A}^{-1}}=\left[ \begin{matrix}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{6} & 0 \\
0 & 0 & \frac{1}{9} \\
\end{matrix} \right]$
Where $ B={{A}^{-1}}$
Now, check the result for
$ A{{A}^{-1}}={{I}_{3}}$ And ${{A}^{-1}}A={{I}_{3}}$
Here, $ A=\left[ \begin{matrix}
3 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 9 \\
\end{matrix} \right]$
So, $\begin{align}
& A{{A}^{-1}}=\left[ \begin{matrix}
3 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 9 \\
\end{matrix} \right]\left[ \begin{matrix}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{6} & 0 \\
0 & 0 & \frac{1}{9} \\
\end{matrix} \right] \\
& A{{A}^{-1}}=\left[ \begin{matrix}
1+0+0 & 0+0+0 & 0+0+0 \\
0+0+0 & 0+1+0 & 0+0+0 \\
0+0+0 & 0+0+0 & 0+0+1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{3}}
\end{align}$
And, $\begin{align}
& {{A}^{-1}}A=\left[ \begin{matrix}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{6} & 0 \\
0 & 0 & \frac{1}{9} \\
\end{matrix} \right]\left[ \begin{matrix}
3 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 9 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1+0+0 & 0+0+0 & 0+0+0 \\
0+0+0 & 0+1+0 & 0+0+0 \\
0+0+0 & 0+0+0 & 0+0+1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{3}}
\end{align}$
Thus, $ A{{A}^{-1}}={{I}_{3}}$ and ${{A}^{-1}}A={{I}_{_{3}}}$.