Answer
The linear system can be written as $\left[ \begin{matrix}
7 & 5 \\
3 & 2 \\
\end{matrix} \right]$ $\left[ \begin{align}
& x \\
& y \\
\end{align} \right]$ $=\left[ \begin{align}
& 23 \\
& 10 \\
\end{align} \right]$
Work Step by Step
Consider the given system equations:
$\begin{align}
& 7x+5y=23 \\
& 3x+2y=10
\end{align}$
The linear system can be written as: $ AX=B $
$\left[ \begin{matrix}
7 & 5 \\
3 & 2 \\
\end{matrix} \right]$ $\left[ \begin{align}
& x \\
& y \\
\end{align} \right]$ $=\left[ \begin{align}
& 23 \\
& 10 \\
\end{align} \right]$
Where, $ A=\left[ \begin{matrix}
7 & 5 \\
3 & 2 \\
\end{matrix} \right]$ $ X=\left[ \begin{align}
& x \\
& y \\
\end{align} \right]$ $ B=\left[ \begin{align}
& 23 \\
& 10 \\
\end{align} \right]$