Answer
The product of $ AB=\left[ \begin{matrix}
-6 & -12 \\
3 & 6 \\
\end{matrix} \right]$, product of $ BA=\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]$ and $ B\ne {{A}^{-1}}$ because $ ad-bc=0$ and the matrix is not invertible.
Work Step by Step
The given expression is
$ A=\left[ \begin{matrix}
-2 & 4 \\
1 & -2 \\
\end{matrix} \right],B=\left[ \begin{matrix}
1 & 2 \\
-1 & -2 \\
\end{matrix} \right]$
Now, we will compute the matrix as $\left[ AB \right]$
$\begin{align}
& AB=\left[ \begin{matrix}
-2 & 4 \\
1 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
-1 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\left( -2 \right)\times 1+4\times \left( -1 \right) & \left( -2 \right)\times 2+4\times \left( -2 \right) \\
1\times 1+\left( -2 \right)\times \left( -1 \right) & 1\times 2+\left( -2 \right)\times \left( -2 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
-6 & -12 \\
3 & 6 \\
\end{matrix} \right]
\end{align}$
And, we will compute the matrix as $\left[ BA \right]$
$\begin{align}
& BA=\left[ \begin{matrix}
1 & 2 \\
-1 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
-2 & 4 \\
1 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\times \left( -2 \right)+2\times 1 & 1\times 4+2\times \left( -2 \right) \\
\left( -1 \right)\times \left( -2 \right)+\left( -2 \right)\times 1 & \left( -1 \right)\times 4+\left( -2 \right)\times \left( -2 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]
\end{align}$
Thus $ AB=\left[ \begin{matrix}
-6 & -12 \\
3 & 6 \\
\end{matrix} \right]$ and matrix $ BA=\left[ \begin{matrix}
0 & 0 \\
0 & 0 \\
\end{matrix} \right]$
Now, compute the matrix $ B={{A}^{-1}}$.
$ B=\left[ \begin{matrix}
1 & 2 \\
-1 & -2 \\
\end{matrix} \right]$
And
$ A=\left[ \begin{matrix}
-2 & 4 \\
1 & -2 \\
\end{matrix} \right]$
Determine the inverse of matrix A.
Now, using inverse formula
${{A}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$
Substitute the value to get
$\begin{align}
& a=-2 \\
& b=4 \\
& c=1 \\
& d=-2 \\
\end{align}$
So, $\begin{align}
& {{A}^{-1}}=\frac{1}{\left| 4-4 \right|}\left[ \begin{matrix}
-2 & -4 \\
-1 & -2 \\
\end{matrix} \right] \\
& =\frac{1}{0}\left[ \begin{matrix}
-2 & -4 \\
-1 & -2 \\
\end{matrix} \right]
\end{align}$
Here, $ ad-bc=0$
So, the matrix is not invertible.
Thus, $ B $ is not the multiplicative inverse of $ A $.