Answer
The inverse matrix of the provided matrix is ${{A}^{-1}}=\left[ \begin{matrix}
1 & \frac{1}{2} \\
2 & \frac{3}{2} \\
\end{matrix} \right]$
Work Step by Step
Consider the given matrix $ A=\left[ \begin{matrix}
3 & -1 \\
-4 & 2 \\
\end{matrix} \right]$
Now, by using the inverse formula, we get:
${{A}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$
Let, $\begin{align}
& a=3 \\
& b=-1 \\
& c=-4 \\
& d=2
\end{align}$
Substitute the values to get, $\begin{align}
& {{A}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right] \\
& {{A}^{-1}}=\frac{1}{\left| 3\times 2-\left( -1 \right)\times \left( -4 \right) \right|}\left[ \begin{matrix}
2 & 1 \\
4 & 3 \\
\end{matrix} \right] \\
& =\frac{1}{6+\left( -4 \right)}\left[ \begin{matrix}
2 & 1 \\
4 & 3 \\
\end{matrix} \right] \\
& =\frac{1}{2}\left[ \begin{matrix}
2 & 1 \\
4 & 3 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & \frac{1}{2} \\
2 & \frac{3}{2} \\
\end{matrix} \right]
\end{align}$
So, therefore the inverse of the matrix is given by:
${{A}^{-1}}=\left[ \begin{matrix}
1 & \frac{1}{2} \\
2 & \frac{3}{2} \\
\end{matrix} \right]$
Now, check the result for
$ A{{A}^{-1}}={{I}_{2}}$ And ${{A}^{-1}}A={{I}_{2}}$
Here, $ A=\left[ \begin{matrix}
3 & -1 \\
-4 & 2 \\
\end{matrix} \right]$
So, $\begin{align}
& A{{A}^{-1}}=\left[ \begin{matrix}
3 & -1 \\
-4 & 2 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & \frac{1}{2} \\
2 & \frac{3}{2} \\
\end{matrix} \right] \\
& A{{A}^{-1}}=\left[ \begin{matrix}
3\times 1+\left( -1 \right)\times 2 & 3\times \frac{1}{2}+\left( -1 \right)\times \frac{3}{2} \\
\left( -4 \right)\times 1+2\times 2 & \left( -4 \right)\times \frac{1}{2}+2\times \frac{3}{2} \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{2}}
\end{align}$
This implies that
${{A}^{-1}}A={{I}_{2}}$
Now, evaluate the product ${{A}^{-1}}A={{I}_{2}}$.
$\begin{align}
& {{A}^{-1}}A=\left[ \begin{matrix}
1 & \frac{1}{2} \\
2 & \frac{3}{2} \\
\end{matrix} \right]\left[ \begin{matrix}
3 & -1 \\
-4 & 2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\times 3+\frac{1}{2}\left( -4 \right) & 1\times \left( -1 \right)+\frac{1}{2}\times 2 \\
2\times 3+\frac{3}{2}\times \left( -4 \right) & 2\times \left( -1 \right)+\frac{3}{2}\times 2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{2}}
\end{align}$