Answer
The inverse matrix of the provided matrix is ${{A}^{-1}}=\left[ \begin{matrix}
\frac{1}{6} & \frac{1}{4} \\
\frac{1}{3} & 0 \\
\end{matrix} \right]$
Work Step by Step
Consider the given matrix $ A=\left[ \begin{matrix}
0 & 3 \\
4 & -2 \\
\end{matrix} \right]$
Now, by using the inverse formula, we get:
${{A}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$
Let, $\begin{align}
& a=0 \\
& b=3 \\
& c=4 \\
& d=-2
\end{align}$
Substitute the values to get
$\begin{align}
& {{A}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right] \\
& {{A}^{-1}}=\frac{1}{\left| 0\times \left( -2 \right)-3\times 4 \right|}\left[ \begin{matrix}
-2 & -3 \\
-4 & 0 \\
\end{matrix} \right] \\
& =\frac{1}{-12}\left[ \begin{matrix}
-2 & -3 \\
-4 & 0 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\frac{-2}{-12} & \frac{-3}{-12} \\
\frac{-4}{-12} & \frac{0}{-12} \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\frac{1}{6} & \frac{1}{4} \\
\frac{1}{3} & 0 \\
\end{matrix} \right]
\end{align}$
So, therefore the inverse of the matrix is
${{A}^{-1}}=\left[ \begin{matrix}
\frac{1}{6} & \frac{1}{4} \\
\frac{1}{3} & 0 \\
\end{matrix} \right]$
Now, check the result for
$ A{{A}^{-1}}={{I}_{2}}$ And ${{A}^{-1}}A={{I}_{2}}$
Here, $ A=\left[ \begin{matrix}
0 & 3 \\
4 & -2 \\
\end{matrix} \right]$
So, $\begin{align}
& A{{A}^{-1}}=\left[ \begin{matrix}
0 & 3 \\
4 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
\frac{1}{6} & \frac{1}{4} \\
\frac{1}{3} & 0 \\
\end{matrix} \right] \\
& A{{A}^{-1}}=\left[ \begin{matrix}
0\times \frac{1}{6}+3\times \frac{1}{3} & 0\times \frac{1}{4}+3\times 0 \\
4\times \frac{1}{6}+\left( -2 \right)\times \frac{1}{3} & 4\times \frac{1}{4}+\left( -2 \right)\times 0 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{2}}
\end{align}$
This implies that
${{A}^{-1}}A={{I}_{2}}$
Now, evaluate the product ${{A}^{-1}}A={{I}_{2}}$.
$\begin{align}
& {{A}^{-1}}A=\left[ \begin{matrix}
\frac{1}{6} & \frac{1}{4} \\
\frac{1}{3} & 0 \\
\end{matrix} \right]\left[ \begin{matrix}
0 & 3 \\
4 & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\frac{1}{6}\times 0+\frac{1}{4}\times 4 & \frac{1}{6}\times 3+\frac{1}{4}\times \left( -2 \right) \\
\frac{1}{3}\times 0+0\times 4 & \frac{1}{3}\times 3+0\times \left( -2 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{2}}
\end{align}$