Answer
The inverse matrix of the provided matrix is ${{A}^{-1}}=\left[ \begin{matrix}
-3 & 2 & -4 \\
-1 & 1 & -1 \\
8 & -5 & 10 \\
\end{matrix} \right]$.
Work Step by Step
Consider the given matrix $ A=\left[ \begin{matrix}
5 & 0 & 2 \\
2 & 2 & 1 \\
-3 & 1 & -1 \\
\end{matrix} \right]$.
Compute matrix in the form of:
$\left[ \left. A \right|I \right]$
The augment with identity matrix is:
$\left[ \left. A \right|I \right]=\left[ \begin{matrix}
5 & 0 & 2 & 1 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 \\
-3 & 1 & -1 & 0 & 0 & 1 \\
\end{matrix} \right]$
Now, by using the row operations we will reduce the matrix into row-echelon form for the inverse as below:
$\begin{align}
& {{R}_{2}}\to {{R}_{2}}-\frac{2}{5}\times {{R}_{1}}, \\
& {{R}_{3}}\to {{R}_{3}}+\frac{3}{5}\times {{R}_{1}}, \\
& {{R}_{3}}\to {{R}_{3}}-\frac{1}{2}\times {{R}_{2}} \\
\end{align}$
The resulting matrix is:
$\left[ \begin{matrix}
5 & 0 & 2 & 1 & 0 & 0 \\
0 & 2 & \frac{1}{5} & -\frac{2}{5} & 1 & 0 \\
0 & 0 & \frac{1}{10} & \frac{4}{5} & -\frac{1}{2} & 1 \\
\end{matrix} \right]$
Again, apply the row operations as below:
$\begin{align}
& {{R}_{3}}\to 10\times {{R}_{3}}, \\
& {{R}_{2}}\to {{R}_{2}}-\frac{1}{5}\times {{R}_{3}}, \\
& {{R}_{1}}\to {{R}_{1}}-2\times {{R}_{3}}, \\
& {{R}_{2}}\to \frac{1}{2}\times {{R}_{2}}, \\
& {{R}_{1}}\to \frac{1}{5}\times {{R}_{1}} \\
\end{align}$
$\begin{align}
& \left[ \left. A \right|I \right]=\left[ \begin{matrix}
1 & 0 & 0 & -3 & 2 & -4 \\
0 & 1 & 0 & -1 & 1 & -1 \\
0 & 0 & 1 & -8 & -5 & 10 \\
\end{matrix} \right] \\
& =\left[ \left. I \right|B \right]
\end{align}$
Where ${{A}^{-1}}=\left[ B \right]$
So, The inverse of matrix is
${{A}^{-1}}=\left[ \begin{matrix}
-3 & 2 & -4 \\
-1 & 1 & -1 \\
8 & -5 & 10 \\
\end{matrix} \right]$
Now, check the result for
$ A{{A}^{-1}}={{I}_{3}}$
And, ${{A}^{-1}}A={{I}_{3}}$
Here, $ A=\left[ \begin{matrix}
5 & 0 & 2 \\
2 & 2 & 1 \\
-3 & 1 & -1 \\
\end{matrix} \right]$
And, ${{A}^{-1}}=\left[ \begin{matrix}
-3 & 2 & -4 \\
-1 & 1 & -1 \\
8 & -5 & 10 \\
\end{matrix} \right]$
So, $\begin{align}
& A{{A}^{-1}}=\left[ \begin{matrix}
5 & 0 & 2 \\
2 & 2 & 1 \\
-3 & 1 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
-3 & 2 & -4 \\
-1 & 1 & -1 \\
-8 & -5 & 10 \\
\end{matrix} \right] \\
& A{{A}^{-1}}=\left[ \begin{matrix}
\left( -15 \right)+0+16 & 10+0+\left( -10 \right) & \left( -20 \right)+0+20 \\
\left( -6 \right)+\left( -2 \right)+8 & 4+2+\left( -5 \right) & \left( -8 \right)+\left( -2 \right)+10 \\
9+\left( -1 \right)+\left( -8 \right) & \left( -6 \right)+1+5 & 12+\left( -1 \right)+\left( -10 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{3}}
\end{align}$
And, $\begin{align}
& {{A}^{-1}}A=\left[ \begin{matrix}
-3 & 2 & -4 \\
-1 & 1 & -1 \\
8 & -5 & 10 \\
\end{matrix} \right]\left[ \begin{matrix}
5 & 0 & 2 \\
2 & 2 & 1 \\
-3 & 1 & -1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\left( -15 \right)+4+12 & 0+4+\left( -4 \right) & \left( -6 \right)+2+4 \\
\left( -5 \right)+2+3 & 0+2+\left( -1 \right) & \left( -2 \right)+1+1 \\
40+\left( -10 \right)+\left( -30 \right) & 0+\left( -10 \right)+10 & 16+\left( -5 \right)+\left( -10 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{3}}
\end{align}$
Thus, $ A{{A}^{-1}}={{I}_{3}}$ and ${{A}^{-1}}A={{I}_{_{3}}}$.