Answer
The linear system can be written as, $\left[ \left. \begin{matrix}
6 & 5 \\
5 & 4 \\
\end{matrix} \right|\begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{align}
& 13 \\
& 10 \\
\end{align} \right]$
Work Step by Step
Consider the given system of equations:
$\begin{align}
& 6x+5y=13 \\
& 5x+4y=10
\end{align}$
The linear system can be written as: $ AX=B $
$\left[ \left. \begin{matrix}
6 & 5 \\
5 & 4 \\
\end{matrix} \right|\begin{matrix}
x \\
y \\
\end{matrix} \right]=\left[ \begin{align}
& 13 \\
& 10 \\
\end{align} \right]$
Where, $ A=\left[ \begin{matrix}
6 & 5 \\
5 & 4 \\
\end{matrix} \right]$ $ X=\left[ \begin{align}
& x \\
& y \\
\end{align} \right]$ $ B=\left[ \begin{align}
& 13 \\
& 10 \\
\end{align} \right]$