Answer
The inverse matrix of the provided matrix is ${{A}^{-1}}=\left[ \begin{matrix}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{6} \\
\end{matrix} \right]$
Work Step by Step
Consider the given matrix $ A=\left[ \begin{matrix}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 6 \\
\end{matrix} \right]$
Augment with identity matrix:
$\left[ \left. A \right|I \right]=\left[ \begin{matrix}
2 & 0 & 0 & 1 & 0 & 0 \\
0 & 4 & 0 & 0 & 1 & 0 \\
0 & 0 & 6 & 0 & 0 & 1 \\
\end{matrix} \right]$
Now, we will use following row operations to row reduce for an inverse:
$\begin{align}
& {{R}_{3}}\to \frac{1}{6}\times {{R}_{3}}, \\
& {{R}_{2}}\to \frac{1}{4}\times {{R}_{_{2}}}, \\
& {{R}_{1}}\to \frac{1}{2}\times {{R}_{1}} \\
\end{align}$
The resulting matrix is:
$\begin{align}
& \left[ \left. A \right|I \right]=\left[ \begin{matrix}
1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 1 & 0 & 0 & \frac{1}{4} & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{6} \\
\end{matrix} \right] \\
& =\left[ \left. I \right|B \right]
\end{align}$
So, the inverse of the matrix is:
${{A}^{-1}}=\left[ \begin{matrix}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{6} \\
\end{matrix} \right]$
Where $ B={{A}^{-1}}$
Now, check the result for
$ A{{A}^{-1}}={{I}_{3}}$ And ${{A}^{-1}}A={{I}_{3}}$
Here, $ A=\left[ \begin{matrix}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 6 \\
\end{matrix} \right]$
Now, $\begin{align}
& A{{A}^{-1}}=\left[ \begin{matrix}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 6 \\
\end{matrix} \right]\left[ \begin{matrix}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{6} \\
\end{matrix} \right] \\
& A{{A}^{-1}}=\left[ \begin{matrix}
2\times \frac{1}{2}+0\times 0+0\times 0 & 2\times 0+0\times \frac{1}{4}+0\times 0 & 2\times 0+0\times 0+0\times \frac{1}{6} \\
0\times \frac{1}{2}+4\times 0+0\times 0 & 0\times 0+4\times \frac{1}{4}+0\times 0 & 0\times 0+4\times 0+0\times \frac{1}{6} \\
0\times \frac{1}{2}+0\times 0+6\times 0 & 0\times 0+0\times \frac{1}{4}+6\times 0 & 0\times 0+0\times 0+6\times \frac{1}{6} \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{3}}
\end{align}$
Now, evaluate the product ${{A}^{-1}}A={{I}_{3}}$
$\begin{align}
& {{A}^{-1}}A=\left[ \begin{matrix}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{6} \\
\end{matrix} \right]\left[ \begin{matrix}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 6 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\frac{1}{2}\times 2+0\times 0+0\times 0 & \frac{1}{2}\times 0+0\times 4+0\times 0 & \frac{1}{2}\times 0+0\times 0+0\times 6 \\
0\times 2+\frac{1}{4}\times 0+0\times 0 & 0\times 0+\frac{1}{4}\times 4+0\times 0 & 0\times 0+\frac{1}{4}\times 0+0\times 6 \\
0\times 2+0\times 0+\frac{1}{6}\times 0 & 0\times 0+0\times 4+\frac{1}{6}\times 0 & 0\times 0+0\times 0+\frac{1}{6}\times 6 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{3}}
\end{align}$
Thus, $ A{{A}^{-1}}={{I}_{3}}$ and ${{A}^{-1}}A={{I}_{_{3}}}$