Answer
The linear system can be written as
$\left[ \begin{matrix}
1 & 3 & 4 \\
1 & 2 & 3 \\
1 & 4 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
-3 \\
-2 \\
-6 \\
\end{matrix} \right]$
Work Step by Step
Consider the given system of equations:
$\begin{align}
& x+3y+4z=-3 \\
& x+2y+3z=-2 \\
& x+4y+3z=-6
\end{align}$
The linear system can be written as: $ AX=B $
$\left[ \begin{matrix}
1 & 3 & 4 \\
1 & 2 & 3 \\
1 & 4 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
-3 \\
-2 \\
-6 \\
\end{matrix} \right]$
Where, $ A=\left[ \begin{matrix}
1 & 3 & 4 \\
1 & 2 & 3 \\
1 & 4 & 3 \\
\end{matrix} \right]$ $ X=\left[ \begin{align}
& x \\
& y \\
& z \\
\end{align} \right]$ $ B=\left[ \begin{align}
& -3 \\
& -2 \\
& -6 \\
\end{align} \right]$