Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Exercise Set - Page 932: 31

Answer

The linear system can be written as $\left[ \begin{matrix} 1 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 3 \\ \end{matrix} \right]\left[ \begin{matrix} x \\ y \\ z \\ \end{matrix} \right]=\left[ \begin{matrix} -3 \\ -2 \\ -6 \\ \end{matrix} \right]$

Work Step by Step

Consider the given system of equations: $\begin{align} & x+3y+4z=-3 \\ & x+2y+3z=-2 \\ & x+4y+3z=-6 \end{align}$ The linear system can be written as: $ AX=B $ $\left[ \begin{matrix} 1 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 3 \\ \end{matrix} \right]\left[ \begin{matrix} x \\ y \\ z \\ \end{matrix} \right]=\left[ \begin{matrix} -3 \\ -2 \\ -6 \\ \end{matrix} \right]$ Where, $ A=\left[ \begin{matrix} 1 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 4 & 3 \\ \end{matrix} \right]$ $ X=\left[ \begin{align} & x \\ & y \\ & z \\ \end{align} \right]$ $ B=\left[ \begin{align} & -3 \\ & -2 \\ & -6 \\ \end{align} \right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.