Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 63

Answer

$$2$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {5{{\left( {\sin x} \right)}^{3/2}}\cos x} dx \cr & {\text{Use the substitution method}}{\text{:}} \cr & u = \sin x,\,\,\,\,du = \cos xdx,\,\,\,\,\,dx = \frac{{du}}{{\cos x}} \cr & {\text{Then}}{\text{,}} \cr & \int {5{{\left( {\sin x} \right)}^{3/2}}\cos x} dx = \int {5{u^{3/2}}\cos x} \left( {\frac{{du}}{{\cos x}}} \right) \cr & = \int {5{u^{3/2}}du} \cr & {\text{Integrate by the power rule}} \cr & = 5\left( {\frac{{{u^{5/2}}}}{{5/2}}} \right) + C \cr & = 2{u^{5/2}} + C \cr & {\text{Write in terms of }}x;{\text{ replace }}u = \sin x \cr & = 2{\left( {\sin x} \right)^{5/2}} + C \cr & \int_0^{\pi /2} {5{{\left( {\sin x} \right)}^{3/2}}\cos x} dx = \left( {2{{\left( {\sin x} \right)}^{5/2}}} \right)_0^{\pi /2} \cr & {\text{Evaluate}} \cr & = 2{\left( {\sin \frac{\pi }{2}} \right)^{5/2}} - 2{\left( {\sin 0} \right)^{5/2}} \cr & = 2{\left( 1 \right)^{5/2}} - 2{\left( 0 \right)^{5/2}} \cr & = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.