Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 42

Answer

$$ - \frac{1}{t} - \frac{1}{{{t^2}}} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{{{\left( {t + 1} \right)}^2} - 1}}{{{t^4}}}} dt \cr & {\text{expanding }}{\left( {t + 1} \right)^2} \text{ gives} \cr & = \int {\frac{{{t^2} + 2t + 1 - 1}}{{{t^4}}}} dt \cr & = \int {\frac{{{t^2} + 2t}}{{{t^4}}}} dt \cr & {\text{distribute and simplify}} \cr & = \int {\left( {\frac{{{t^2}}}{{{t^4}}} + \frac{{2t}}{{{t^4}}}} \right)} dt \cr & = \int {\left( {{t^{ - 2}} + 2{t^{ - 3}}} \right)} dt \cr & {\text{integrate by using the power rule}} \cr & = \frac{{{t^{ - 1}}}}{{ - 1}} + 2\left( {\frac{{{t^{ - 2}}}}{{ - 2}}} \right) + C \cr & = - \frac{1}{t} - \frac{1}{{{t^2}}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.