Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 62

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \int_{\pi /4}^{3\pi /4} {\csc z\cot z} dz \cr & {\text{We know that}}\cr &\,\,\,\frac{d}{{d\theta }}\left[ {\csc \theta } \right] = - \csc \theta \cot \theta \cr &{\text{Then}}{\text{,}} \cr & \int_{\pi /4}^{3\pi /4} {\csc z\cot z} dz = - \left( {\csc z} \right)_{\pi /4}^{3\pi /4} \cr & {\text{Evaluate}} \cr & = - \left( {\csc \frac{{3\pi }}{4} - \csc \frac{\pi }{4}} \right) \cr & {\text{Simplifying, we get:}} \cr & = - \left( {\sqrt 2 - \sqrt 2 } \right) \cr & = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.