Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 59

Answer

$$6\sqrt 3 - 2\pi $$

Work Step by Step

$$\eqalign{ & \int_\pi ^{3\pi } {{{\cot }^2}\frac{x}{6}} dx \cr & {\text{Use the trigonometric identity}}\cr & \cot^2 \theta + 1 = {\csc ^2}\theta \cr & = \int_\pi ^{3\pi } {\left( {{{\csc }^2}\frac{x}{6} - 1} \right)} dx \cr & {\text{We know that }}\frac{d}{{dx}}\left[ {\cot x} \right] = - {\csc ^2}x.{\text{ Then}}{\text{,}} \cr & = \left( { - 6\cot \left( {\frac{x}{6}} \right) - x} \right)_\pi ^{3\pi } \cr & {\text{Evaluate}} \cr & = \left( { - 6\cot \left( {\frac{{3\pi }}{6}} \right) - 3\pi } \right) - \left( { - 6\cot \left( {\frac{\pi }{6}} \right) - \pi } \right) \cr & {\text{Simplifying}} \cr & = - 6\left( 0 \right) - 3\pi + 6\sqrt 3 + \pi \cr & = 6\sqrt 3 - 2\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.