Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 37

Answer

$$ - 4\sqrt {\cos x} + C $$

Work Step by Step

$$\eqalign{ & \int {2{{\left( {\cos x} \right)}^{ - 1/2}}\sin x} dx \cr & {\text{use the substitution method}}{\text{:}} \cr & u = \cos x,\,\,\,\,du = - \sin xdx,\,\,\,\,\,dx = \frac{{du}}{{ - \sin x}} \cr & {\text{Then}}{\text{,}} \cr & \int {2{{\left( {\cos x} \right)}^{ - 1/2}}\sin x} dx = \int {2{u^{ - 1/2}}\sin x} \left( {\frac{{du}}{{ - \sin x}}} \right) \cr & = \int {2{u^{ - 1/2}}} \left( { - du} \right) \cr & = - 2\int {{u^{ - 1/2}}} du \cr & {\text{integrating by the power rule gives}} \cr & = - 2\left( {\frac{{{u^{1/2}}}}{{1/2}}} \right) + C \cr & = - 4{u^{1/2}} + C \cr & = - 4\sqrt u + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \cos x \cr & = - 4\sqrt {\cos x} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.