Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 55

Answer

$$\frac{1}{2}\pi $$

Work Step by Step

$$\eqalign{ & \int_0^\pi {{{\sin }^2}5r} dr \cr & {\text{use si}}{{\text{n}}^2}\theta = \frac{1}{2} - \frac{1}{2}\cos 2\theta \cr & \int_0^\pi {{{\sin }^2}5r} dr = \int_0^\pi {\left( {\frac{1}{2} - \frac{1}{2}\cos 2\left( {5r} \right)} \right)} dr \cr & = \int_0^\pi {\left( {\frac{1}{2} - \frac{1}{2}\cos 10r} \right)} dr \cr & {\text{integrating}} \cr & = \left( {\frac{1}{2}r - \frac{1}{{2\left( {10} \right)}}\sin 10r} \right)_0^\pi \cr & = \frac{1}{2}\left( {r - \frac{1}{{10}}\sin 10r} \right)_0^\pi \cr & {\text{Evaluating, we get:}} \cr & = \frac{1}{2}\left( {\pi - \frac{1}{{10}}\sin 10\pi } \right) - \frac{1}{2}\left( {0 - \frac{1}{{10}}\sin 10\left( 0 \right)} \right) \cr & = \frac{1}{2}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.