Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 41

Answer

$$\frac{{{t^3}}}{3} + \frac{4}{t} + C $$

Work Step by Step

$$\eqalign{ & \int {\left( {t - \frac{2}{t}} \right)\left( {t + \frac{2}{t}} \right)} dt \cr & {\text{multiply the expression }}\left( {t - \frac{2}{t}} \right)\left( {t + \frac{2}{t}} \right) \cr & \left( {t - \frac{2}{t}} \right)\left( {t + \frac{2}{t}} \right) = {\left( t \right)^2} - {\left( {\frac{2}{t}} \right)^2} \cr & \left( {t - \frac{2}{t}} \right)\left( {t + \frac{2}{t}} \right) = {t^2} - \frac{4}{{{t^2}}} \cr & \left( {t - \frac{2}{t}} \right)\left( {t + \frac{2}{t}} \right) = {t^2} - 4{t^{ - 2}} \cr & {\text{Then}} \cr & \int {\left( {t - \frac{2}{t}} \right)\left( {t + \frac{2}{t}} \right)} dt = \int {\left( {{t^2} - 4{t^{ - 2}}} \right)} dt \cr & {\text{integrate by using the power rule}} \cr & = \frac{{{t^3}}}{3} - 4\left( {\frac{{{t^{ - 1}}}}{{ - 1}}} \right) + C \cr & {\text{simplifying, we get:}} \cr & = \frac{{{t^3}}}{3} + \frac{4}{t} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.