Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 308: 38

Answer

$$ - \frac{2}{{\sqrt {\tan x} }} + C $$

Work Step by Step

$$\eqalign{ & \int {{{\left( {\tan x} \right)}^{ - 3/2}}{{\sec }^2}x} dx \cr & {\text{use the substitution method}}{\text{: }} \cr & u = \tan x,\,\,\,\,du = {\sec ^2}xdx,\,\,\,\,\,dx = \frac{{du}}{{{{\sec }^2}x}} \cr & {\text{Then}}{\text{,}} \cr & \int {{{\left( {\tan x} \right)}^{ - 3/2}}{{\sec }^2}x} dx = \int {{u^{ - 3/2}}{{\sec }^2}x} \left( {\frac{{du}}{{{{\sec }^2}x}}} \right) \cr & = \int {{u^{ - 3/2}}du} \cr & {\text{integrating by the power rule gives}} \cr & = \frac{{{u^{ - 1/2}}}}{{ - 1/2}} + C \cr & = - 2{u^{ - 1/2}} + C \cr & = - \frac{2}{{\sqrt u }} + C \cr & {\text{write in terms of }}x;{\text{ replace }}u = \tan x \cr & = - \frac{2}{{\sqrt {\tan x} }} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.